WWW.DISS.SELUK.RU

БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА
(Авторефераты, диссертации, методички, учебные программы, монографии)

 

На правах рукописи

ТЕРЕХИН Александр Александрович

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОТРЫВА

ТУРБУЛЕНТНОГО ПОГРАНИЧНОГО СЛОЯ ПРИ ОБТЕКАНИИ

ЛЕТАТЕЛЬНЫХ АППАРАТОВ

05.13.18 – математическое моделирование, численные методы и комплексы

программ

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

ЧЕЛЯБИНСК – 2009

Работа выполнена на кафедре «Двигатели летательных аппаратов»

Южно-Уральского государственного университета.

доктор технических наук, доцент

Научный руководитель:

КАРТАШЕВ Александр Леонидович.

Официальные оппоненты: доктор технических наук, профессор СПИРИДОНОВ Евгений Константинович.

кандидат технических наук САЛИЧ Василий Леонидович.

ОАО «ОКБ «Новатор» г. Екатеринбург.

Ведущая организация:

Защита состоится 28 октября 2009 г., в 12.00 ч, на заседании диссертационного совета Д 212.298.14 при Южно-Уральском государственном университете по адресу: 454080, г. Челябинск, пр. им. В.И. Ленина, 76, зал заседаний ученого совета № 1 (ауд. 1001).

С диссертацией можно ознакомиться в библиотеке Южно-Уральского государственного университета.

Автореферат разослан 14 сентября 2009 г.

Ученый секретарь Соколинский Л.Б.

диссертационного совета

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Проектирование ракетной техники является сложным многоэтапным процессом. Важную роль в проектировании играет исследование аэродинамики летательного аппарата (ЛА), целью которого является определение аэродинамических характеристик (подъёмной силы, силы сопротивления, положения центра давления и др.) корпуса и его элементов, необходимых для проведения прочностных расчетов и вычисления параметров системы управления. Турбулентные течения занимают особое место при проведении численного моделирования внешнего обтекания во время нахождения аэродинамических характеристик (АДХ) в связи с необходимостью анализа условий полета, связанных с отрывом потока от корпуса ракеты или её оперения. Одна из основных проблем, стоящих на пути вычислительной аэрогидродинамики - это моделирование турбулентных течений.

Наиболее близкие к реальности результаты могут быть получены при внесении минимальных допущений в исходную математическую модель и численный алгоритм решения. В этом смысле наиболее привлекательным является метод моделирования отсоединённых вихрей Detached Eddy Simulation (DNS). Но DNS на данный момент не доступен для решения задач с реальной геометрией при больших числах Рейнольдса. Использование широко распространенных математических моделей, основанных на решении уравнений Рейнольдса Reynolds Averaged Navier-Stokes equations (RANS) для моделирования обтекания вязкой жидкостью корпусов и элементов ракет с реальными геометрическими размерами также оказывается весьма трудоёмким. Прежде всего, это связано со сложностью организации неравномерной адаптивной расчётной сетки в рассматриваемой области течения. При неортогональных сетках в многомерных случаях использование обобщённых координат приводит к появлению дополнительных членов в ошибке аппроксимации дифференциальных уравнений, описывающих движение газа. При быстро растущих сетках и отклонениях от ортогональности более 450 в численном решении появляются дополнительные ошибки, влияющие на общую точность решения.

Также известно, что численное моделирование течений при больших числах Рейнольдса может быть выполнено на модели идеальной жидкости. Применение уравнений невязкого газа не требует малых размеров ячеек на поверхности рассматриваемого объекта, а это значительно улучшает устойчивость, сходимость и снижает затраты на подготовку численной модели. Уравнения невязкого газа лишены дополнительных параметров, связанных с турбулентностью, что приводит их к малой чувствительности к граничным условиям, что также немаловажно при подготовке численной модели.

Возвращаясь к вопросу определения сил воздействия среды на корпус и элементы ракеты, необходимо отметить, что, несмотря на большие возможности вычислительной техники, очень важной задачей остаётся проблема повышения эффективности использования ресурсов электронно-вычислительной машины (ЭВМ) для решения задач, имеющих большую размерность и многопараметричность.

Размерность задачи наиболее часто связана с большими числами Рейнольдса, которые заставляют проводить сильное измельчение области пограничного слоя, увеличивая количество контрольных объёмов в расчётной сетке. Под многопараметричностью в данной работе понимается многообразие всевозможных условий обтекания, зависящих от чисел Маха, углов атаки, чисел Рейнольдса, а так же разнообразие, связанное и с геометрией. Наиболее ярким примером многопараметричности для ракетной техники является задача, связанная с выявлением оптимальной геометрии крыла конечного размаха в определённом диапазоне изменения внешних параметров обтекания. Для данной задачи очень важную роль играет переход от сложных систем моделирования течения газа к уравнениям Эйлера.



Цель работы заключается в создании метода математического моделирования внешнего обтекания летательных аппаратов, основанного на выявлении сложных физических особенностей пристеночного течения при использовании уравнений невязкого газа и аналитических зависимостей теории пограничного слоя.

Задачи работы. Для достижения поставленной цели необходимо решить следующие задачи:

1. Провести анализ режимов обтекания, для которых допустимо применение уравнений Эйлера.

2. Провести анализ существующих полуэмпирических методов описания турбулентного пограничного слоя, позволяющих выявить границы применения уравнений Эйлера и отвечающих требованиям совместного решения при проведении расчётов.

3. Разработать математическую модель отрыва пограничного слоя, отвечающую требованиям эффективного применения совместно с системой уравнений Эйлера.

4. Разработать методику математического моделирования с использованием модели отрыва пограничного слоя и уравнений Эйлера для определения аэродинамических характеристик летательных аппаратов.

5. Провести численное тестирование разработанного математического метода моделирования внешнего обтекания и предложенной математической модели отрыва пограничного слоя. Установить эффект применения уравнений Эйлера и математической модели отрыва при определении аэродинамических характеристик летательного аппарата на примере корпуса и крыла конечного размаха.

Объектом исследования в данной работе являются отрывные течения и методы их моделирования.

Метод исследования заключается в сравнении упрощенного подхода вычисления АДХ с более сложными вычислительными методами и в выявлении положительных и отрицательных эффектов. Оценка результатов и точность моделирования проводятся путём их сравнения с результатами физического эксперимента.

Для компенсирования недостающей информации экспериментальных данных о состоянии пограничного слоя использована современная модель турбулентности k- SST. Данная модель хорошо моделирует отрывные пристеночные течения и широко используется в инженерной практике. Разработанная методика вычисления АДХ ЛА позволяет значительно сократить время расчёта, трудоёмкость подготовки численной модели, увеличить устойчивость и уменьшить время сходимости при проведении вычислительного эксперимента.

Научная новизна полученных результатов заключается в следующем:

1. разработана математическая модель, определяющая отрыв турбулентного пограничного слоя при совместном решении с уравнениями Эйлера, отличающаяся от известных тем, что определяющие параметры выделены в явной форме.

2. определены границы применения уравнений невязкого газа при вычислении аэродинамических характеристик летательных аппаратов;

3. разработан метод математического моделирования внешнего обтекания летательных аппаратов с использованием уравнений Эйлера и разработанной математической модели отрыва пограничного слоя;

4. проведен численный анализ применения разработанного математического метода моделирования внешнего обтекания и предложенной модели отрыва пограничного слоя при использовании уравнений Эйлера для определения аэродинамических характеристик летательного аппарата.

Основные положения, выносимые на защиту.

На защиту выносятся:

1. математическая модель отрыва пограничного слоя, позволяющая прогнозировать отрыв турбулентного пограничного слоя на основе потенциального обтекания, определяющие параметры которой выражены в явном виде;

2. результаты численного моделирования корпусов и элементов летательного аппарата при использовании разработанной математической модели отрыва пограничного слоя и уравнений невязкого газа;

3. метод математического моделирования внешнего обтекания с использованием математической модели отрыва пограничного слоя и уравнений Эйлера для определения аэродинамических характеристик летательного аппарата, позволяющего значительно экономить время проведения численного эксперимента.

Теоретическая значимость работы заключается в том, что предложенная математическая модель отрыва описывает отрыв турбулентного пограничного слоя и его параметры при совместном использовании с уравнениями Эйлера.

Практическая значимость полученных результатов состоит в том, что результаты настоящей работы могут найти широкое применение в области численного моделирования многопараметрических задач стационарной и нестационарной аэрогидродинамики ЛА. За счёт существенного сокращения ресурса ЭВМ предлагаемый подход позволяет значительно увеличить размерность моделируемой задачи при использовании современных многоядерных персональных вычислительных машин. Разработанная математическая модель описания отрыва позволяет определять параметры турбулентного пограничного слоя, что дает возможность успешно применять её в предварительных расчетах численного моделирования внешних и внутренних течений.

Внедрение работы проведено на выполненном техническом задании1, востребованного предприятием ОАО ОКБ «Новатор».

Сидельников Р. В. Отчёт о научно исследовательской работе «Определение коэффициентов нормальных и продольных сил изолированных крыльев по числам маха и углам» / руководитель темы Сидельников Р. В., исполнители: Терехин А. А., Терехина Т. В., (ТЗ от 01.03.2006, по договору №2006118) / 2006. – 525.

Апробация работы. Основные положения и результаты работы докладывались на 6 конференциях.

Результаты, полученные в ходе выполнения работы, были отмечены 3 грантами губернатора Челябинской области и грантом предприятия ЗАО «ПГ «Метран».

Публикации. По результатам исследований, представленных в диссертационной работе, опубликовано 15 работ, из них 4 статьи опубликованы в журналах, рекомендованных ВАК.

В статье [1] Терехину А.А. принадлежит математическая модель отрыва турбулентного пограничного слоя, схема получения решения и алгоритм использования математической модели отрыва с уравнениями Эйлера. В статье [2] Терехину А.А. принадлежит постановка вычислительного эксперимента с использованием моделей вязких и невязких течений применительно к профилям крыльев и проведения анализа влияния состояния пограничного слоя на получение основных характеристик профилей крыльев. В статье [3] Терехину А.А. принадлежит постановка численного эксперимента с использованием низкорейнольдсовой модели турбулентности и проведения анализа влияния в численном эксперименте напряжения трения на распределенное давление по поверхности исследуемого прибора.

В статье [4] Терехину А.А. принадлежит постановка численного эксперимента и проведение анализа возможного применения уравнений невязкого газа для моделирования сверхзвуковой струи. В работах [5-9] Терехину А.А. принадлежит постановка численного эксперимента и проведения анализа использования сложных систем уравнений газовой динамики при моделировании внешнего обтекания. В работах [10-14] Терехину А.А принадлежит подготовка основных блоков программы трехмерного моделирования газодинамических процессов DynamLGTM, на которую получено свидетельство о государственной регистрации [15]. Авторский вклад Терехина А.А. в программу DynamLGTM состоит в создание модулей программы моделирования ламинарных и турбулентных течений, локального измельчения, сохранения и загрузки данных расчета, аппроксимации исследуемого тела в расчетной области, отображения полей течения в двумерной области, расчета интегральных, распределенных аэродинамических характеристик и создание окончательного программного кода.

Структура и объем работы. Диссертация состоит из введения, пяти глав, выводов и заключения, списка использованной литературы (92 наименования). Работа содержит 129 страниц и 131 рисунок.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулирована цель и поставлены задачи диссертационной работы.

В первой главе проведен обзор литературы по современным методам описания движения вязкого газа. В главе выделяется проблема, связанная с отрывными течениями, и её роль в определении аэродинамических характеристики элементов и корпусов ракет. Проводится анализ методов, описывающих состояние пограничного слоя, основанных на результатах численного решения потенциального обтекания. Рассмотренные в главе 1.1 математические подходы моделирования вязких течений являются достаточно трудоемкими, они требуют значительного времени для проведения вычислений и не подходят для многопараметрических задач ракетной техники.

В главе 1.2 рассмотрены подходы, используемые в теории турбулентного пограничного слоя. На их основе формулируется модель отрыва, позволяющая эффективно применять уравнения Эйлера для моделирования внешнего обтекания.

Во второй главе проводится анализ дифференциальных математических моделей, описывающих внешнюю аэродинамику. Из анализа следует, что для экономии вычислительных ресурсов наиболее предпочтительной является модель невязкого газа. Уравнения Эйлера не содержат вязкостных слагаемых, что позволяет исключить пограничный слой из расчета. Отсутствие пограничного слоя упрощает постановку численного моделирования и существенно сокращает потребную оперативную память вычислительной машины.

Особенностью второй главы является наличие полуэмпирических зависимостей, применяемых в дальнейшем для разработки математической модели отрыва пограничного слоя. Предлагаемая модель, описывающая отрыв пограничного слоя, основана на уравнении импульса, записанного в параметрах теории пограничного слоя. Для описания пограничного слоя на поверхности профилей крыльев и крыльев конечного размаха воспользуемся уравнением импульса для двумерного пограничного слоя (Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974.):

Уравнение импульса для осесимметричного пограничного слоя, имеющего место на телах вращения, имеет вид (Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974.):

где M(x)– число Маха на внешней границе пограничного слоя; 1 (x) – плотность на внешней границе пограничного слоя, кг/м3; r(x) – радиус кривизны обтекаемого тела, м; U(x) – скорость в направлении оси x (вдоль стенки) на внешней границе пограничного слоя, м/с; H12 (x) = 1 - формпараметр; 1 (x) – толщина вытеснеx) ния; 2 (x) – толщина потери импульса.

Толщину потери импульса 2 (x) в формулах (1) и (2) определим по методике Труккенбродта (Truckenbrodt E. Ein Quadraturverfahren zur Berechnung der laminaren und turbulenten Reibungsschicht bei ebener und rotationssymmetrischer Stromung.

Ing. 1952):

где длину ламинарного участка; l – длина профиля (тела вращения), м;

C f (x) = 0.02666 Re(x) 0.139 – коэффициент турбулентного сопротивления продольU x но обтекаемой; Re(x) = – число Рейнольдса; C fl – коэффициент ламинарного сопротивления продольно обтекаемой пластины; U – скорость невозмущённого потока, м/с; – плотность невозмущённого потока, кг/м3; µ – коэффициент динамической вязкости, обусловленный молекулярным переносом, Па с ;

хпер – точка перехода пограничного слоя из ламинарного в турбулентный, м; n=6 – коэффициент, полученный аппроксимацией экспериментальных данных турбулентных пограничных слоёв при различных значениях формпараметра H12 при анализе турбулентной диссипации к числу Рейнольдса.

Формпараметр H12 (x) определяется из двух формул: Труккенбродта, выведенной путём аппроксимации касательного напряжения на стенке для различных турбулентных пограничных слоёв, от параметра H12 (x) и логарифмической формулы Сквайра для продольно обтекаемой пластины с турбулентным пограничным слоем (Squiге Н. В. Note on the motion inside a region of recirculation (Cavity Flow). Aeronaut. 1956):

Недостающие параметры потока ( U(x), M 2 (x),(x )) вычислим уравнениями невязкого газа (Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974).

В третьей главе проводится анализ возможного использования дискретного аналога модели невязкого газа для турбулентных течений на примере обтекания профилей крыльев RAE 2822, NACA 0012, MBB-A3 и тел вращения конусцилиндр и оживало-цилиндр при определении их аэродинамических характеристик.

Результаты, полученные диссертантом с использованием уравнений невязкого газа, хорошо согласуются с экспериментальными данными и результатами, полученными автором с использованием k- SST модели турбулентности для течений, не имеющих отрыва пограничного слоя.

При наличии отрыва пограничного слоя наблюдаются значительное расхождение коэффициента давления, вычисленного с использованием уравнений невязкого газа с экспериментальными данными и результатами, полученными диссертантом с использованием модели k- SST.

Уравнения Эйлера хорошо моделируют безотрывные течения, это так же подтверждается сравнением интегральных характеристик, наибольшее расхождение которых не превышает 10% от экспериментальных данных. Отсутствие вязкостных слагаемых в уравнениях Эйлера приводит к большим погрешностям моделирования отрывных течений, расхождение интегральных характеристик по сравнению с экспериментальными данными достигает 40%. Для выявления возможного отрыва течения предлагается математическая модель, с помощью которой можно разделить безотрывные течения и течения с возможным наличием отрыва.

В четвёртой главе автором формулируется математическая модель отрыва пограничного слоя. Она является обобщением двух различных методик дополненных уравнениями теории пограничного слоя. За критерий, описывающий возможность отрыва пограничного слоя, принят коэффициент поверхностного трения, который обращается в ноль в месте отрыва. Для плоского пограничного слоя коэффициент поверхностного трения определяется из теоремы импульсов (1):

Толщина потери импульса вычисляется по методу Труккенбродта (Truckenbrodt E.

Ein Quadraturverfahren zur Berechnung der laminaren und turbulenten Reibungsschicht bei ebener und rotationssymmetrischer Stromung. Ing. 1952):

где l – длина профиля, м;

Формпараметр H12 (x) определяется по формуле (4). Недостающие параметры потока ( U(x), M 2 (x),(x )) вычисляются уравнениями Эйлера.

Одним из преимуществ, предлагаемых диссертантом в данном подходе формул, является то, что определяемые промежуточные параметры пограничного слоя 2 (x) и H12 (x) выражены в явном виде, это значительно облегчает нахождение C имп f (x).

Использование формулы (5), основанной на уравнении импульсов, хорошо согласуются с результатами эксперимента (AGARD Report AR. 1979. No. 138) в областях, где нет скачков уплотнения. Как показал анализ, применения данной зависимости в области трансзвукового обтекания невозможно, вычисленный коэффиd 2 (x) циент C f (x) терпит разрыв. Это связано с тем, что функция в зоне скачка уплотнения имеет разрыв, что приводит к невозможности использование зависимости (5) в зоне скачка уплотнения. Для нахождения коэффициента поверхностного трения в зоне скачка уплотнения воспользуемся формулой Сквайра, которая не имеет слагаемого 2 и поэтому не терпит разрыва:

Переход от формулы (5) к (7) производится условным оператором:

Как показали результаты исследований диссертанта формула (8) достаточно надежно моделирует отрыв пограничного слоя в зоне скачка уплотнения (рис. 1, б). В случае безотрывного обтекания формула (8) не прогнозирует отрыва пограничного слоя, что так же подтверждается физическим и численным экспериментами () (рис. 1, а).

Рис. 1. Изменение коэффициента поверхностного трения по поверхности профиля RAE 2822 без отрыва и отрывом пограничного слоя (c – длина профиля) (AGARD Report AR. 1979. No. 138).

Для определения отрыва пограничного слоя на телах вращения уравнение (2) для коэффициента поверхностного трения запишем в виде:

где r – текущий радиус обтекаемого тела вращения. Уравнения (6), (7) и (8) остаются неизменными.

Отрыв потока у тел вращения начинается с носовой части. Сам срыв потока является трёхмерным и переходит на цилиндрическую часть. Вихревая пелена появляется на заветренной стороне цилиндра.

При увеличении угла атаки на заветренной стороне корпуса начинает развиваться вторичное течение, которое имеет трёхмерный характер. Для учета трехмерного характера отрыва пограничного слоя с поверхности тел вращений диссертантом вводится полуэмпирический поправочный коэффициент на слагаемое 1 dU(x) в уравнении (9). Этот коэффициент изменяется от условий обтекания и U(x) dx зависит от степени сжимаемости:

С учётом поправочного коэффициента (10) формула (9) запишется в виде:

При обтекании без отрыва пограничного слоя и с его отрывом формула (8), в которую входит уравнение (11), достоверно прогнозирует наличие отрыва в течениях, где он присутствует, что соответствует физическому эксперименту (рис. 2, 3).

Предложенный диссертантом поправочный коэффициент позволяет регистрировать наличие отрыва пограничного слоя, имеющего сложную вихревую структуру.

Обтекание с отрывом пограничного слоя. Обтекание с без отрыва пограничного слоя.

Распределение коэффициента поверхностного трения по заветренной стороне корпуса с учётом поправочного коэффициента на слагаемое 1 dU(x) (D–диаметр корпуса).

Таким образом, зависимость (8) в совокупности с уравнениями невязкого газа позволяет приближённо определять изменение напряжения трения по поверхности профилей и тел вращений. Формула (8) используется для определения границ применимости уравнений невязкого газа. Применение уравнений невязкого газа в свою очередь, по сравнению с более сложными подходами, позволяет вести расчёты на крупных сетках, уменьшая время расчёта и снижая трудоёмкость подготовки математической модели от стадии создания расчётной сетки до обработки результатов.

В пятой главе диссертантом проводится оценка эффективности применения предложенной математической модели отрыва и уравнений Эйлера, формируя метод математического моделирования с использованием математической модели отрыва пограничного слоя и уравнениями Эйлера для моделирования внешнего обтекания летательного аппарата. В качестве исследуемых объектов используются крыло конечного размаха различной конфигурации и корпус крылатой ракеты подводного старта (Тарас А. Е. Атомный подводный флот 1955-2005. М.: АСТ, 2006).

При рассмотрении численного расчета, автором предложено разбить численное моделирование внешнего обтекания на следующие основные этапы: 1) генерация сетки предварительного расчёта; 2) предварительный расчёт параметров течения с использованием упрощённых моделей; 3) генерация сетки основного расчёта для заданного числа Re; 4) основной расчёт.

Необходимо отметить, что как показал численный анализ, проведенный диссертантом, в некоторых случаях вместо предварительного расчёта с использованием методов численного моделирования можно прибегать к полуэмпирическим методам определения параметров пристеночной области (например, с использованием формул определения поверхностного трения для пластины или других упрощённых зависимостей). Применение приближённых формул для определения размеров пристеночной области не всегда оправдывается, так как при неверном выборе параметров расчёт придётся проводить заново с уточнёнными значениями пристеночной области. Это ведёт к удвоению затраченного времени, что является крайне неэффективным при решении многопараметрических задач. Использование в предварительном расчёте модели невязкого газа и модели отрыва позволяет исключить накладываемые ограничения на генерируемую пристеночную область и достаточно точно определить параметры пограничного слоя. Если точность решаемой задачи лежит в диапазоне 10% процентов, течение является безотрывным, то результаты предварительного расчёта можно принять за окончательные, тем самым исключить проведение расчетов с использованием сложных математических моделей.

Если при анализе течения формула (8) прогнозирует отрыв пограничного слоя, то целесообразно проведенный расчет использовать как предварительный, из которого можно определить необходимые размеры пристеночной области и ориентировочные точки отрыва пограничного слоя. Выбрав модель турбулентности и определив критерий y + с помощью выражения можно достаточно просто определить размер ячейки (y) на поверхности корпуса для заданных чисел Рейнольдса. Так как предложенная математическая модель отрыва вычисляет коэффициент напряжения поверхностного трения достаточно точно, то использование формулы (12) для вычисления y является наиболее целесообразным. С учетом использования данных, полученных с применением уравнений Эйлера и разработанной модели в качестве предварительных результатов, общее сокращение времени постановки вычислительного эксперимента с наличием отрывных и безотрывных течений, составляет 1,8 раза.

Как показали численные эксперименты при моделировании внешнего обтекания на поверхности исследуемых объектов могут образовываться отрывные зоны.

В соответствии со схемой проведения численного эксперимента с использованием уравнений Эйлера полученные результаты необходимо брать в качестве предварительных. Если отрывных зон не обнаруживается, то вычислительный эксперимент можно считать законченным. Сформулируем укрупнённую структуру метода математического моделирования внешнего обтекания с использованием математической модели отрыва и уравнений Эйлера: 1) проведение численного моделирования с использованием уравнений Эйлера; 2) определение границ применимости уравнений Эйлера с использованием разработанной математической модели отрыва и определение параметров пограничного слоя; 3) если применять уравнения Эйлера для данного течения нельзя, переходим на математические модели более высокого уровня; 4) если применять уравнения Эйлера можно, то заканчиваем расчет.

В предлагаемом методе математическая модель отрыва пограничного слоя используется для определения границы применимости уравнений Эйлера и обеспечивает переход от уравнений Эйлера к уравнениям, учитывающим вязкостные эффекты. Математическая модель отрыва позволяет выявить особенности моделируемого пограничного слоя: наличие отрыва и его положение, толщину пограничного слоя и напряжение трения на поверхности. Эти данные необходимы для построения расчетной области, удовлетворяющие требованиям более сложных систем численного моделирования, учитывающих вязкостные эффекты.

ВЫВОДЫ И ЗАКЛЮЧЕНИЕ

Проведенный диссертантом анализ современных методов моделирования турбулентных течений показал, что их применение для многопараметрических задач является неэффективным из-за требуемого времени вычислений и сложности постановки численного эксперимента. Из рассмотренных в главе 2 дифференциальных математических моделей, применяемых для определения аэродинамических характеристик ракет, наиболее экономичной является модель на основе уравнений Эйлера. За счет отсутствия вязкостных слагаемых использование уравнений невязкого газа позволяет существенно сократить время решения задач внешней аэродинамики. Проведенные диссертантом в главе 3 тестовые расчёты обтеканий профилей крыльев и тел вращений с применением уравнений Эйлера показали хорошее совпадение полученных аэродинамических характеристик с экспериментальными данными для безотрывных течений (максимальное расхождение не превышает 10%). Выявление безотрывных течений проводится путем определения наличия отрыва пограничного слоя с помощью разработанной диссертантом в главе 4 математической модели отрыва. Данная модель основана на обобщении и дополнении существующих уравнений теории пограничного слоя. Модель отрыва отвечает требованиям совместного применения с уравнениями Эйлера и не влечет увеличения вычислительного времени при постановке численного эксперимента. За критерий, характеризующий отрыв пограничного слоя, автором выбран коэффициент поверхностного трения. Условием отрыва является обращение коэффициента поверхностного трения в ноль. В тестовых расчетах обтеканий профилей крыльев и тел вращения, проведенных автором, модель отрыва достоверно определяет отрыв пограничного слоя. Выбор коэффициента поверхностного трения в качестве критерия, описывающего отрыв пограничного слоя, позволяет использовать результаты вычислений в качестве предварительных данных. Это добавляет разработанной математической модели отрыва и предложенной схеме универсальности и эффективности.

Для совместного использование уравнений Эйлера и математической модели отрыва для определения АДХ ЛА диссертантом разработана методика математического моделирования. Проведенная в главе 5 апробация показала, что методика математического моделирования с использованием математической модели отрыва пограничного слоя и уравнениями Эйлера уменьшает время проведения расчетов внешнего обтекания минимум в 2 раза и снижает потребную оперативную память ЭВМ примерно в 10 раз. Для смешанных случаев обтекания, когда имеются течения с отрывами и без отрыва пограничного слоя, среднее уменьшение времени расчетов примерно в 4 раз. При этом необходимо отметить, что верхняя граница увеличения производительности зависит от типов течений и характера многопараметричности решаемой задачи.

Таким образом, подводя итог проведенных исследований диссертантом, выделим основные результаты работы:

1. проведен анализ режимов обтекания, для которых допустимо применение уравнений Эйлера;

2. проведен анализ существующих полуэмпирических методов описания турбулентного пограничного слоя, позволяющих выявить границы применения уравнений Эйлера и отвечающих требованиям совместного решения при проведении расчётов;

разработана математическая модель отрыва пограничного слоя, отвечающая требованиям эффективного применения совместно с системой уравнений Эйлера;

4. разработан метод математического моделирования с использованием модели отрыва пограничного слоя и уравнений Эйлера для определения аэродинамических характеристик летательных аппаратов;

5. проведено тестирование предложенной математической модели отрыва пограничного слоя и метода математического моделирования с использованием модели отрыва и уравнений Эйлера. Установлен эффект применения уравнений Эйлера и математической модели отрыва при определении аэродинамических характеристик летательного аппарата на примере корпуса крылатой ракеты и крыла конечного размаха.

Статьи, опубликованные в научных журналах из списка ВАК 1. Терехин А. А., Сидельников Р. В., Павлюк Ю. С. Численное моделирование обтекания профилей крыла с использованием уравнений невязкого газа // Известия высших учебных заведений. Авиационная техника. 2009. №1. C. 72-74.

2. Терехин А. А., Сидельников Р. В., Терехина Т. В. Численный анализ влияния поверхностного трения на аэродинамические характеристики // Вестник ЮжноУральского государственного университета. Серия: Машиностроение. 2008. № (110). Вып. 11. C. 45- 3. Терехин А. А., Сидельников Р. В., Рандина Т. В. Определение касательных напряжений при малых числах Рейнольдса // Вестник Южно-Уральского государственного университета. Серия: Машиностроение. 2005. №14 (54). Вып. 7.

C. 44-46.

4. Сидельников Р. В., Терехин А. А., Рандина Т. В. Численное моделирование сверхзвуковой неизобарической турбулентной струи в дозвуковом спутном потоке // Вестник Южно-Уральского государственного университета. Серия: Машиностроение. 2002. №6 (15). Вып. 2. C. 46-49.

5. Сидельников Р. В., Терехина Т. В., Терехин А. А. Анализ влияния входных параметров моделей турбулентности на определение аэродинамических характеристик летательного аппарата / Труды XXVI Российской школы по проблемам науки и технологий. Миасс: МСНТ, 2006. С. 29.

6. Терехин А.А., Сидельников Р. В. Моделирование взаимодействия набегающего потока с поперечно выдуваемой струей на теле вращения / Труды V международной научно-технической конференции «АКТ-2004». Секция: «Аэродинамика и тепломассообмен». Воронеж: ВГТУ, 2004. С. 102-111.

7. Терехина Т. В., Терехин А. А., Сидельников Р. В. Анализ влияния входных параметров моделей турбулентности при численном определении аэродинамических характеристик летательного аппарата / Международная молодежная научная конференция «XIV Туполевские чтения». Секция: «Аэродинамика и динамика полета». Казань: КГТУ, 2004. С. 23.

8. Терехин А. А., Рандина Т. В., Сидельников Р. В. Моделирование обтекания кругового конуса при наличии струи, истекающей через щелевидное сопло из его боковой поверхности / Международная молодежная научная конференция «XII Туполевские чтения». Секция: «Аэродинамика и динамика полета». Казань: КГТУ, 2004. С. 16-17.

9. Терехин А. А. Рандина Т. В., Сидельников Р. В. Численное моделирование сверхзвуковой неизобарической турбулентной струи в дозвуковом спутном потоке / Всероссийская молодежная научная конференция «VII Королевские чтения». Тезисы докладов. Секция: «Механика, аэродинамика и динамика полета». Самара:

СГАУ, 2003. С. 47-48.

10. Сидельников Р. В., Терехин А. А., Терехина Т. В. Метод регенерации расчетных сеток при определении аэродинамических характеристик деформируемого корпуса летательного аппарата / Труды XXVI Российской школы по проблемам науки и технологий. Миасс: МСНТ, 2006. С. 30.

11. Терехин А. А., Сидельников Р. В. Локализация расчётной области при моделировании органов газоструйного управления / Всероссийская научно-техническая конференция «Динамика машин и рабочих процессов». Секция: «Динамика теплофизических процессов и энергетические установки». Челябинск: ЮУрГУ, 2005. С.

115-123.

12. Терехин А. А. Разработка программного средства для исследования аэродинамических характеристик летательного аппарата в специальных условиях / Сборник рефератов научно-исследовательских работ студентов. Челябинск: ЮурГУ, 2003. C. 152.

13. Терехин А. А. Разработка программного средства решающего задачи газодинамического управления летательных аппаратов / Сборник рефератов научноисследовательских работ аспирантов. Челябинск: ЮурГУ, 2004. C. 160 – 161.

14. Терехин А. А., Рандина Т. В., Сидельников Р. В. Регенерация расчетных сеток при численном определении аэродинамических характеристик деформированного корпуса летательного аппарата / Международная молодежная научная конференция «XIV Туполевские чтения». Секция: «Аэродинамика и динамика полета». Казань: КГТУ, 2006. С. 23.

15. Свидетельство о государственной регистрации программы для ЭВМ «DynamLGTM: программа трехмерного моделирования газодинамических процессов» / А. А. Терехин, Т. В. Терехина, А. В. Щеглов, Р. В. Сидельников, А. Л. Карташев. Заявка № 2009613165 от 18.06.2009.





Похожие работы:

«ПУСТОВ АЛЕКСАНДР ЮРЬЕВИЧ ОЦЕНКА ВНЕШНЕЭКОНОМИЧЕСКОЙ КОНЪЮНКТУРЫ НА ПРОДУКЦИЮ МЕТАЛЛУРГИЧЕСКОГО КОМПЛЕКСА (НА ПРИМЕРЕ ЖЕЛЕЗНОЙ РУДЫ) Специальность 08.00.05 – Экономика и управление народным хозяйством (промышленность) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Москва – 2013 Работа выполнена на кафедре микроэкономики Экономического факультета в Российской академии народного хозяйства и государственной службы при Президенте Российской...»

«ФИЛИМОНОВА Наталья Владимировна ФРАЗЕОЛОГИЗМЫ, НОМИНИРУЮЩИЕ ЧЕЛОВЕКА ПО ЧЕРТАМ ХАРАКТЕРА, В РУССКОМ И НЕМЕЦКОМ ЯЗЫКАХ: СТРУКТУРНЫЙ И СЕМАНТИЧЕСКИЙ АСПЕКТЫ Специальность 10.02.20 – Сравнительно-историческое, типологическое и сопоставительное языкознание АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата филологических наук Челябинск, 2011 Работа выполнена в Государственном образовательном учреждении высшего профессионального образования Челябинский государственный...»

«Небогина Надежда Александровна ВЛИЯНИЕ СОСТАВА НЕФТИ И СТЕПЕНИ ЕЕ ОБВОДНЕННОСТИ НА СТРУКТУРНО-МЕХАНИЧЕСКИЕ СВОЙСТВА ЭМУЛЬСИЙ 02.00.13 – Нефтехимия АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук Томск 2009 Работа выполнена в Учреждении Российской академии наук Институте химии нефти Сибирского отделения РАН Научный руководитель : кандидат технических наук Юдина Наталья Васильевна...»

«Самойлова Анна Васильевна ОСОБЕННОСТИ ГЕОЛОГИЧЕСКОГО РАЗВИТИЯ, СТРОЕНИЯ И ПРОДУКТИВНОСТИ ПОЗДНЕДЕВОНСКИХ ОТЛОЖЕНИЙ РОВЕНСКОКРАСНОКУТСКОГО ВАЛА (на примере месторождения Белокаменное). СПЕЦИАЛЬНОСТЬ: 25.00.12. - Геология, поиски и разведка горючих ископаемых АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата геолого-минералогических наук Москва – 2006 Работа выполнена в Институте проблем нефти и газа РАН Научный руководитель : доктор геолого-минералогических наук,...»

«ЗЕКИЕВА ПЕТИМАТ МАСУДОВНА ЗАГОЛОВОЧНЫЙ КОМПЛЕКС КАК ТЕХНИЧЕСКИЙ КОНСТРУКТ РИТОРИЧЕСКОЙ МОДАЛЬНОСТИ В НЕМЕЦКОЙ ПУБЛИЦИСТИКЕ Специальность 10.02.04 – германские языки Автореферат диссертации на соискание ученой степени кандидата филологических наук Пятигорск – 2012 Работа выполнена на кафедре немецкой филологии в ФГБОУВПО Пятигорский государственный лингвистический университет Научный руководитель : кандидат филологических наук, доцент Морозова Маргарита Евгеньевна Официальные...»

«Прокопьев Сергей Анатольевич РАЗРАБОТКА ТЕХНОЛОГИИ УЛЬТРАОКСИПИРОЛИЗА ДРЕВЕСНОЙ БИОМАССЫ ДЛЯ ПОЛУЧЕНИЯ БИОНЕФТИ И ДРЕВЕСНОГО УГЛЯ 05.21.03 — Технология и оборудование химической переработки биомассы дерева; химия древесины АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург 2007 2 Работа выполнена на кафедре технологии лесохимических продуктов и биологически активных веществ Санкт-Петербургской государственной лесотехнической...»

«Ванкович Александр Юрьевич Акмеологические знания в системе управления организационными отношениями Специальность 19.00.13 – психология развития, акмеология (психологические наук и) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата психологических наук Москва-2013 Работа выполнена на кафедре акмеологии и психологии профессиональной деятельности Федерального государственного бюджетного образовательного учреждения высшего профессионального образования Российская...»

«Яблоков Александр Сергеевич ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК ПЛАВУЧИХ КРАНОВ ЗА СЧЕТ ПРИМЕНЕНИЯ ГИДРОТРАНСФОРМАТОРОВ В МЕХАНИЗМЕ ПОДЪЕМА Специальность 05.08.05 – Судовые энергетические установки и их элементы (главные и вспомогательные) Автореферат диссертации на соискание ученой степени кандидата технических наук Нижний Новгород – 2011 Работа выполнена в Федеральном бюджетном образовательном учреждении высшего профессионального образования Волжская...»

«УЛУМБЕКОВА Гузель Эрнстовна НАУЧНОЕ ОБОСНОВАНИЕ СТРАТЕГИИ РАЗВИТИЯ ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ДО 2020 ГОДА 14.02.03 Общественное здоровье и здравоохранение Автореферат диссертации на соискание ученой степени кандидата медицинских наук Москва 2011 2 Работа выполнена в ФГУ Центральный научно-исследовательский институт организации и информатизации здравоохранения Росздрава (ЦНИИОИЗ Росздрава) Научный руководитель : доктор медицинских наук, профессор, академик РАМН...»

«Чжао Вэньцзе ОСОБЕННОСТИ ОРГАНИЗАЦИИ ТЕКСТА ГАЗЕТНОЙ ЗАМЕТКИ Специальность 10.02.01 - русский язык Автореферат диссертации на соискание ученой степени кандидата филологических наук Москва 2007 Работа выполнена в Отделе корпусной лингвистики и лингвистической поэтики Института русского языка им. В.В. Виноградова РАН. Научный руководитель : доктор филологических наук Фатеева Наталья Александровна Официальные...»

«РАЗИНКОВ ДМИТРИЙ ГЕННАДИЕВИЧ ТЕОРЕТИКО-ПРАВОВЫЕ ОСНОВЫ ЗАЩИТЫ ЛИЧНЫХ НЕИМУЩЕСТВЕННЫХ ПРАВ РОССИЙСКИХ ГРАЖДАН Специальность 12.00.01 – теория и история права и государства; история учений о праве и государстве АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата юридических наук Санкт-Петербург 2 Работа выполнена на кафедре теории и истории государства и права НОУ ВПО Юридический институт (Санкт-Петербург) Научный руководитель :...»

«Досова Анна Владимировна ТЕОРЕТИЧЕСКИЕ И ПРАКТИЧЕСКИЕ ОСОБЕННОСТИ КОМПЛЕКСНОГО КРИМИНАЛИСТИЧЕСКОГО ИССЛЕДОВАНИЯ ДОКУМЕНТОВ С ИЗМЕНЕННЫМИ РЕКВИЗИТАМИ Специальность: 12.00.12 – криминалистика; судебно-экспертная деятельность; оперативно – розыскная деятельность Автореферат диссертации на соискание ученой степени кандидата юридических наук Волгоград – 2014 Работа выполнена в федеральном государственном казенном образовательном учреждении высшего профессионального образования...»

«ВАСЮТИН РУСЛАН НИКОЛАЕВИЧ ПСИХОЛОГО-ПЕДАГОГИЧЕСКИЕ АСПЕКТЫ ОПТИМИЗАЦИИ ПРОФЕССИОНАЛЬНОГО РОСТА В ГРУППЕ В УСЛОВИЯХ РЕФЛЕКСИВНОГО ВИДЕО-ТРЕНИНГА Специальность: 19.00,07.—педагогическая психология АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата психологических наук СОЧИ - 2000 Работа выполнена в Институте рефлексивной психологии творчества и гуманизации образования МАГО и в Запорожском государственном университете Научный руководитель Доктор психологических наук,...»

«Полесский Олег Александрович СТАБИЛИЗАЦИЯ ФОРМИРОВАНИЯ ШВОВ ПРИ ВЫСОКОСКОРОСТНОЙ ДУГОВОЙ СВАРКЕ НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ 05.02.10 – Сварка, родственные процессы и технологии АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Волгоград – 2011 Работа выполнена на кафедре Оборудование и технология сварочного производства Волгоградского государственного технического университета Научный руководитель доктор технических наук, профессор ЛАПИН Игорь...»

«Третьякова Елена Владимировна ОСОБЕННОСТИ УЧЕТА ДОХОДОВ И РАСХОДОВ ОПЕРАТОРАМИ СОТОВОЙ СВЯЗИ Специальность 08.00.12 – Бухгалтерский учет, статистика Автореферат диссертации на соискание ученой степени кандидата экономических наук Екатеринбург – 2008 Диссертационная работа выполнена на кафедре бухгалтерского учета и аудита ГОУ ВПО Уральский государственный экономический университет Научный руководитель Коновалова Ирина Рафаиловна доктор экономических наук Официальные оппоненты...»

«Высоцкая Марианна Сергеевна Между логикой и парадоксом: композитор Фарадж Караев Специальность 17.00.02 музыкальное искусство АВТОРЕФЕРАТ диссертации на соискание учёной степени доктора искусствоведения Москва 2012 1 Работа выполнена в Московской государственной консерватории имени П. И. Чайковского на кафедре теории музыки. Научный консультант : доктор искусствоведения, профессор Григорьева Галина Владимировна, профессор кафедры теории музыки Московской государственной...»

«Тормашев Дмитрий Сергеевич ОЦЕНКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ И ПРОГНОЗИРОВАНИЕ ФУНКЦИОНАЛЬНОЙ НАДЕЖНОСТИ НАСОСОВ СИСТЕМ СУДОВЫХ ДИЗЕЛЕЙ Специальность: 05.08.05 – Судовые энергетические установки и их элементы (главные и вспомогательные) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Новороссийск – 2012 Работа выполнена в ФГОУ ВПО Морская государственная академия имени адмирала Ф.Ф. Ушакова Научный руководитель : доктор технических наук, профессор,...»

«Волынсков Владимир Эдуардович ИНФОРМАЦИОННО-ТЕХНОЛОГИЧЕСКИЕ МЕТОДЫ ПРОЕКТИРОВАНИЯ В АРХИТЕКТУРНОМ ФОРМООБРАЗОВАНИИ Специальность 05.23.20 – Теория и история архитектуры, реставрация и реконструкция историко-архитектурного наследия. Автореферат диссертации на соискание ученой степени кандидата архитектуры Москва – 2012 г.   Диссертация выполнена в Московском архитектурном институте (государственной академии) на...»

«БОЛЬШАКОВ МИХАИЛ НИКОЛАЕВИЧ Разработка методики выявления и оценки продуктивных зон на месторождениях нефти и газа, сложенных карбонатными коллекторами (на примере Оренбургского нефтегазоконденсатного месторождения) Специальность 25.00.12 – Геология, поиски и разведка горючих ископаемых Автореферат диссертации на соискание ученой степени кандидата геолого-минералогических наук Москва – 2007 Работа выполнена в Институте проблем нефти и газа РАН канд. геол.-мин. наук Научный...»

«Тертерян Ашот Владимирович ОЦЕНКА СТОКОРЕГУЛИРУЮЩЕЙ И ПОЧВОЗАЩИТНОЙ СПОСОБНОСТИ ПРОИЗВОДНЫХ ЛЕСОВ СЕВЕРО-ЗАПАДНОГО КАВКАЗА Специальность: 06.01.02 – Мелиорация, рекультивация и охрана земель АВТОРЕФЕРАТ диссертации на соискание учной степени кандидата сельскохозяйственных наук Новочеркасск - 2013 2 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Новочеркасская государственная мелиоративная академия...»






 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.