WWW.DISUS.RU

БЕСПЛАТНАЯ НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Авторефераты, диссертации, методички

 


А.И. Иванус

ЭКОНОМИКА: ГАУССОВОСТЬ, ЗОЛОТОЕ СЕЧЕНИЕ, НЕГАУССОВОСТЬ

В начале хотелось бы выразить свою благодарность руководству сайта и лично А.П.

Стахову за организацию такого научного, содержательного, патриотичного, а в то же время и

демократичного сайта, как АТ. Отрадно видеть, как в течение последних лет число

публикаций на сайт существенно выросло.

Прежде всего, сайт очень удобен своей оперативностью. Не нужно ждать месяцами, когда выйдет твоя публикация. А это очень важно.

Всегда приятно ссылаться на сайт АТ при общении с коллегами и знакомыми. Если они впервые попадают на АТ, то всегда удивляются наличием большого количества публикаций при их высоком научно-познавательном уровне. Единственно, чего не хватает – так это раздела обсуждения, форума. Иногда хочется задать вопрос автору статьи по какому-либо поводу, хотя это в некоторой степени компенсируется возможностями электронной почты.

Обычно после каждой публикации на электронную почту приходит большое количество писем от коллег по тематике золотого сечения, но в основном, что автору ближе, – это по развитию проблемы приложения золотого сечения к экономике. Причем диапазон адресатов весьма велик. От профессоров до бизнесменов и студентов. Очень заметно расширился круг связей и знакомств не только по России, но и по странам СНГ и другим. Уже происходит активный обмен результатами, кое-кто пишет по теме золотого сечения не только дипломы, но и диссертации.

Перечень приложений золотого сечения в экономике весьма значителен. Сейчас эта тема весьма привлекает к себе пристальное внимание. Достаточно много говорится о гармонизации в экономике. Это слово все чаще и чаще произносят даже во властных структурах. Правда, не всегда понятно, что они в это понятие вкладывают. Но и это уже радует.

Хотелось бы привести такой пример. Когда-то, в начале 50-х годов появилось первое поколение ЭВМ. Хотя эти ламповые монстры могли выполнять всего какие-то десятки тысяч операций в секунду, мир был поражен такой сумасшедшей скоростью вычислений. Так вот в то время бытовало мнение, что если каждому государству иметь по одной такой ЭВМ, то тогда все экономические задачи в государстве будут решены. Сейчас любой желающий имеет компьютер, да и не один, а задач экономического содержания на удовлетворительном качественном уровне реально решено еще очень мало. В основном это задачи учета. А вот, например, с прогнозными задачами дело обстоит гораздо хуже. Причем здесь просматривается явная тенденция – чем более мощные компьютеры со временем появляются, тем одновременно большее количество экономических задач «откуда-то» появляется. И этому процессу в обозримом будущем, видимо, конца не будет.

Закрадывается подозрение, что качество решения задач существенно не улучшается, а ведь качеств решения задач логически напрямую влияет на качество нашей жизни. Во всяком случае, даже если качество жизни где-то как-то и улучшается, то не пропорционально количеству компьютеров.

Прогресс в качестве решения более ощутим для тех задач, которые ближе к конкретному производству, к «железу». Задачи управления станками, роботами, производственными комплексами и цехами решаются традиционно как оптимизационные с очевидной экономической эффективностью. Сравнительно хуже решаются задачи управления предприятиями, еще хуже отраслями, еще хуже государством, а уж в мировом масштабе, создается впечатление, что вообще не решаются. То есть чем дальше от техники и ближе к сферам непроизводственным, социальным, тем меньше приходится испытывать радости и оптимизма.

Почему так происходит? Авторская точка зрения – это то, что экономическая система представляет собой всегда набор, совокупность, множество объектов двух типов: имеющих гауссовое распределение и имеющих негауссовое [1]. Причем, эти объекты не существуют разрозненно. Вся сложность и трудность состоит в том, что они взаимосвязаны, взаимозависимы, их нельзя разъединить, нельзя определить, какие являются более главными, а какие - менее. В таком клубке, естественно, трудно найти, где причина, а где следствие. При этом технические системы по своей природе, как правило, гауссовые, а социальные систем негауссовые [2, 3]. И вся проблема в том, что обычно экономисты не делают различия между ними и с негауссовыми работают также как и с гауссовыми, а это чревато ошибками и ложными выводами.

Почему здесь делается упор на распределения, а не на формульные зависимости? Ведь обычно дело обстоит так, что выбранные для исследования процессы описываются формулами, из которых потом получаются уравнения, а из них – производные, динамика и т.д. Все это красиво. Но не всегда возможно, т.к. первичным здесь все-таки является распределение. Собственно, Л. Больцман и придумал-то функцию распределения не от хорошей жизни. Формульной зависимости может и не существовать, а распределение существует всегда, хотя бы в своём самом крайнем варианте – в виде ранговой последовательности, которой можно описать в принципе любой, не измеряемое количественно свойство объекта. Например, можно с помощью ранговой последовательности описать личностные предпочтения частного инвестора при выборе инновационных проектов, что формулой сделать никак невозможно.

Примером взаимосвязанности гауссового и негауссового объектов в экономических системах может служить такая фундаментальная экономическая категория, как спрос. Как следует из экономической теории, спрос есть совокупность двух составляющих [4]:

1. формирование системы потребностей, 2. выбор благ, удовлетворяющих эти потребности.

Формирование потребностей по своей природе есть чисто информационный процесс.

Потребности формируются в сознании потребителя и, как правило, отражают его мировоззренческие, морально-этические, профессиональные, возрастные, гендерные и другие установки, которые имеют тенденцию постоянно меняться и деформироваться в течение практически всей жизни. Поэтому здесь вполне логично заключить, что потребности для каждого человека неизбежно имеют практически неограниченный диапазон, а, следовательно, могут описываться негауссовыми ранговыми распределениями вида Ципфа-Парето в дифференциальной форме [5]:

П(r) = A/(r+B), где П – потребность в виде величины веса ее значимости в некоторой принятой системе жизненных ценностей;

r – ранг, т.е. порядковый номер потребности в этой же системе жизненных ценностей, когда все значения ценностей в этой системе расположены в порядке их убывания;

А и В – параметры распределения;

– показатель степени, для негауссовых распределений лежащий в диапазоне (0,5 ; ).

Выбор благ – это уже ближе к материальному, осязаемому, конкретному товару (услуге, работе). Выбор благ осуществляется непосредственно с учетом реально достижимых условий: наличие товара с желаемыми свойствами, непосредственно в зоне доступности потребителя, качество, условия эксплуатации и т.д. Но самое главное – это наличие финансовых возможностей. А они, к сожалению, очень часто бывают ограниченными.

Ограниченность предложения и ограниченность финансов потребителя – вот те факторы, благодаря которым диапазон выбираемых благ реально имеет гауссовое распределение. Это распределение имеет такой же вид, как и для потребностей:

но коэффициент здесь уже принадлежит диапазону (0; 0,5).

Кроме вида Ципфа-Парето гауссовое распределение потребностей может иметь и более известный вид нормального распределения:

П(х) = (2) exp(-(xкас-m) /(2 )), где m и – параметры распределения, х – некоторая переменная, зависящая, например, от потребительных свойств товара и его цены.

Таким образом, спрос по своей природе – это некоторая сущность, представляющая собой неразделимую композицию гауссовых и негауссовых составляющих компонент, описываемых в принципе одним законом Ципфа-Парето, но с разными значениями коэффициента.

Это напоминает известный принцип «жидкого раствора и застывшего бетона».

Другим примером может служить предложение, которое как экономическая категория, симметрично спросу.

Предложение также можно рассматривать с позиций двух составляющих: гауссовой и негауссовой.

Всякое предложение появляется сначала как негауссовое желание производителя удовлетворить негауссовым потребностям потребителя. Поэтому возникает первоначальный широкий негауссовый разброс в выборе вариантов, какие товары производить и какие способы их производства выбрать. Это также как и спрос – информационный процесс.

А с другой стороны – гауссовый характер реальных ограничений, в первую очередь финансовых (как и для спроса), которые в итоге решают судьбу производства гауссовых благ.

Итак, гауссовые и негауссовые объекты взаимодействуют между собой.

Изучая гауссовые и негауссовые экономические объекты, как порознь, так и в процессе их взаимодействия, автору удалось исследовать это явление на основе данных реальных рынков и получить некоторые совершенно новые интересные результаты, указывающие на случаи самогенерации пропорций золотого сечения, а также исследовать некоторые теоретические аспекты этого феномена.

Ниже эти практические и теоретические результаты тезисно представлены в порядке хронологии их получения (а не по степени важности).

Результат 1 (2002 год) Рассмотрен случай, когда спрос и предложение реализуются в процессе совершения сделки купли-продажи, и исследован вопрос об итоговом распределении результатов сделки с точки зрения соответствия этого итогового распределения золотым пропорциям.

Проанализируем процесс купли-продажи с элементами торга между продавцом и покупателем, который начинается с некоторой начальной цены Ц2 (рис. 1) и заканчивается в точке Ц0 (Ц0 < Ц2). Точка Ц0 должна по теории являться точкой завершения этого торга, а пока этого не произошло, каждая из сторон имеет естественное стремление увеличить свою выгоду за счет другой.

Установлено, что в результате торга между продавцом и покупателем появляются две цены: Ц1 и Ц2 (Ц1 < Ц0 < Ц2). Эти цены интересны тем, что продавец никогда не продаст товар ниже цены Ц1, а покупатель никогда не купит этот товар по цене выше Ц2.

На основе огромного статистического материала по фактам продажи самых различных товаров в течение 3,5 лет, где использовалась именно рассмотренная данная схема куплипродажи с использованием торга между продавцом и покупателем, было выявлено устойчивое отношение т.е. это отношение относится к золотому сечению (золотое сечение №1).

Статистика многократных продаж по рассмотренной схеме говорит о том, что процесс купли-продажи, представляющий график зависимости объемов продаж товара Т от цены Ц на рис. 1., на котором этот процесс аппроксимируется двумя кривыми – 1 и 2.

Кривая 1 - отражает предпочтение в цене товара покупателя (ценовой фактор спроса), Кривая 2 – отражает предпочтение в цене продавца (ценовой фактор предложения).

Какие наблюдения можно сделать из характера поведения этих кривых?

1. Кривые 1 и 2 не выходят за интервал [Ц1, Ц2], так как продавец не продаст по цене ниже Ц1, а покупатель не купит по цене выше Ц2.

2. Кривая 1 имеет максимальное значение в точке Ц3 = Ц1 + 0,38(Ц2 - Ц1) = 0,62Ц1 + 0,38Ц2 (золотое сечение №2) 3. Кривые 1 и 2 пересекаются в точке Ц4 = Ц1 + 0,62(Ц2 - Ц1) = 0,38Ц1 + 0,62Ц2 (золотое сечение №3).

Ц4 - это точка, где предложение продавца и спрос покупателя совпадают, а, следовательно, по определению Ц4 и есть точка равновесия Ц0, т.е. Ц4 = Ц0.

Удивительно, но в точке равновесия интересов Ц0 количество продаж не максимально, как указывает классическая наука, а минимально. Этот факт можно объяснить следующим образом. Точка Ц0 является точкой равновесия с максимальным объемом продаж только в том случае, если между продавцом и покупателем нет процесса торга. А наличие торга и «вмешавшееся» влияние негауссовых по своей природе факторов:

1) внешней конкурентной среды на сознание и психологию продавца и 2) имеющее место безразличие определенной категории покупателей к цене товара изменило с точностью до наоборот всю картину равновесия цены.

При этом окончательный вид сложного распределения на рис.1 – гауссовый (!), хотя по форме оно не есть нормальное, сформировавшееся как результат сложного взаимодействия двух гауссовых и двух негауссовых составляющих спроса и предложения.

Если взять реальные данные продаж товара Т и посчитать отношение суммы объемов продаж под кривой 1 к сумме объемов продаж под кривой 2, то окажется, что это отношение также равно 1 : 0,62 (золотое сечение №4).

Т.е. золотое сечение получилось не только для цен, но и для объемов продаж.

Представленные данные подтверждают гипотезу о возможности самогенерации гармоничных золотых пропорций в процессе купли-продажи.

Эту гипотезу можно проиллюстрировать следующей схемой (рис. 2).

СПРОС ПРЕДЛОЖЕНИЕ

Рис. 2. Схема взаимодействия гауссовых и негауссовых составляющих спроса и предложения в процессе купли-продажи Вывод: Самогенерация золотых пропорций (в количестве 4) при реализации процесса купли-продажи товара можно рассматривать как индикатор классической гармоничности рыночных процессов, т.е. рынок - стабилен, конкуренция – здоровая, достаточна покупательная способность и т.д.

Результат 2 (2005 год). Если гауссовые и негауссовые объекты взаимодействуют, то естественно при этом предположить, что гауссовая кривая в виде нормального закона распределения должна плавно переходить в кривую негауссового распределения в форме кривой частотного распределения Ципфа (или Ципфа-Парето) Чтобы не было разрыва производной, потребуем, чтобы в точке касания этих кривых была одна общая касательная Решение дает точку с координатами (хкас = 1,618 ; yкас = 0,382), т.е. пропорцию золотого сечения (рис.3).

Рис. 3. Точка касания гауссовой и негауссовой кривых Для продолжения полученного результата была получена зависимость параметров m и от координат точек касания:

По полученным точкам построен график (рис. 4).

Рис. 4. Зависимости параметров точек касания гауссовой и негауссовой кривых На этом графике кривая m(xкас) пересекается с кривой (xкас) в точке максимума:

Сам по себе этот результат, на первый взгляд, не указывает на непосредственную связь с золотым сечением. Но в 2003 была опубликована статья [6], в которой её автор проф. О.Б.

Балакшин развивает очень интересную теорию происхождения золотого сечения за счёт формирования динамики сложной системы в условиях наличия в ней очень близких, но различающихся масштабов в осях систем координат, что дало возможность сформулировать «концепцию золотых траекторий собственного развития моделей». При этом получается, что в таких «разномасштабных» системах признаком выполнения этих условий как раз и является наличие параметров со значениями 1,03 и 2,06. А в 2008 году выпущена книга проф. О.Б.

Балакшина [7], в которой он уже непосредственно по поводу данного графика на рис. 4 пишет:

«Это подтверждает наличие в системе пропорций золотого сечения и указывает на возможность самогенерации флюктуаций в точке перехода от y1 к y2. Таким образом, стартовой точкой начала репликационного процесса эволюционного развития сложной рыночной социально-экономической системы могут являться пропорции золотого сечения в ее структуре. … полученные числовые параметры граничного распределения случайных факторов принадлежат золотой системе счисления. Это обстоятельство указывает на факт самопроявления закономерностей гармонии в случайных явлениях и присутствие свойств рекуррентного подобия, характерного для саморазвития живых систем, в социоэкономие – типичной ментальной системе общества».

Результат 3 (2006 год). Получена зависимость оценки энтропии по Шеннону от объема выборки N [8, 9].

Для получения оценки был проведен численный эксперимент при условии баланса энтропийных мер хаоса и порядка [10], где энтропийная мера хаоса выражается формулой:

При проведении эксперимента была выбрана оценка зависимости энтропии системы, элементы которой имеют симметричный биномиальный закон распределения Данный закон выбран вследствие известного факта, что такие фундаментальные распределения гауссового класса, как нормальный, Пуассона, Паскаля, Пойа вытекают из биномиального распределения [11].

Так, если эту формулу разложить по правилу бинома Ньютона, то получится симметричный нормальный закон распределения со средним m = 0,5.

Была получена зависимость оценки энтропии коэффициентов при таком разложении от величины N (рис. 5).

Рис 5. Стремление оценки энтропии нормального закона распределения к величине 0, На графике показано, что при увеличении N относительное значение оценки энтропии асимптотически стремится к величине 0,618.

Справедливости ради следует сказать, что данный график здесь представлен не полностью. На самом деле расчеты проводились и для значительно больших значений N (N > 500). Ниже эта кривая представлена на рис. 6 синим цветом в логарифмическом масштабе.

Видно, что кривая в пределе стремится к величине 0,5, а не 0,62.

Рис. 6. Скорости сходимости для оценок энтропии случайной величины и аппроксимирующего бинома Ньютона Но значения этого диапазона были отвергнуты как некорректные.

Как известно, в соответствии с Центральной предельной теоремой (ЦТП) скорость сходимости оценки среднего значения к математическому ожиданию пропорциональна N-1/2, где N- величина выборки.

Мы в своих построениях использовали бином Ньютона. Бином есть сугубо детерминированная неслучайная функция, а мы ее использовали для аппроксимации случайной величины оценки энтропии (распределенной по нормальному закону). Естественно, здесь возникает вопрос о погрешности аппроксимации. Критерием здесь должна служить величина скорости сходимости. Пока при N < 500 скорость сходимости оценки энтропии для аппроксимирующего бинома практически совпадала со скоростью случайной величины оценки энтропии, все было хорошо. Но при N > 500 скорость сходимости оценки энтропии для бинома стала патологически уменьшаться, аппроксимирующий процесс и случайный процесс перестали соответствовать друг другу и начали расходиться. То есть правее этой точки действие ЦТП нарушается, а поэтому все, что связано с аппроксимирующим процессом – относится к артефакту или к проявлению так называемой «дурной бесконечности». Вот почему при N значению оценки энтропии для аппроксимирующего бинома нельзя доверять, к чему бы оно не стремилось. А доверять можно лишь значению оценке случайной величины энтропии, которая в пределе все-таки равна 0,618.

Для большей наглядности эти рассуждения можно свести в форме таблицы 1.

аппроксимирующего бинома Ньютона энтропии (распределенная по Такие несоответствия иногда встречаются в практике работы со случайными величинами. Поэтому надо весьма осторожно относиться ко всем полученным результатам.

Как говорил известный математик в области численных методов Р. Хэмминг, «цель расчетов – не число, а понимание».

Автор благодарен Василенко С.Л. [12] за отмеченную «нестыковку» в оценке пределов, но, как видно, этот вопрос еще в 2006 году был решен в пользу золотого сечения.

Результат 4 (2008 год). Отсюда следуют весьма фундаментальные выводы, а именно:

Центральная предельная теорема (ЦТП) непосредственно связана с ЗС [13, 9].

Этот результат вытекает из следующей цепочки логических заключений, которые для визуального удобства сведем в таблицу 2:

независимых случайных величин, то в шенноновскими мерами хаоса и соответствии с ЦПТ при увеличении N порядка для этого распределения плотность распределения их среднего стремится к золотому сечению.

арифметического сходится к нормальному Свойства устойчивости. Следует из определения: закон распределения вероятностей называется устойчивым, если композиция таких законов есть тот же закон (возможно, нормальных законов распределения, то в соответствии с ЦПТ при увеличении k их порядка для этой композиции композиция сходится к нормальному стремится к золотому сечению.

законов распределения с произвольной формой и конечными моментами первого и порядка для этой композиции второго порядков, то в соответствии с ЦПТ стремится к золотому сечению.

при увеличении k композиция этих законов распределения сходится к нормальному Из приходим к заключению, что системы с параметрами, описываемыми гауссовыми распределениями (нормальное или Ципфа с конечными моментами первого и второго порядков), имеют тенденцию к самогармонизации.

То есть можно констатировать принцип самогармонизации сложных систем: рост сложности гауссовой системы, состоящей из множества гауссовых подсистем, самопроизвольно влечёт за собой процесс самогармонизации этой системы.

Результат 5 (2008 год). Подтверждением этому выводу служат приведенные ниже графики, полученные для выбранных финансово-экономических показателей известных мировых фирм [14].

В качестве примера рассмотрены зависимости по годам следующих показателей:

1. Отношение собственных средств к валюте баланса (или коэффициент финансовой независимости). Данный показатель удобен тем, что он жестко альтернативен, а именно:

финансовые средства могут быть только или свои или чужие, заемные. Третьего не дано. В этом преимущество данного показателя в части объективности подхода к решению задачи.

2. Приведенная выручка. Этот показатель есть первый показатель, с которого начинается расчет всех остальных. От выручки потом рассчитываются прибыль, налоги и т.д.

Это также представляется преимуществом показателя.

Предварительный экспертный анализ показал, что эти оба показателя имеют гауссовый закон распределения.

Для исследования были выбраны мировые IT компании- гиганты: Samsung, Nokia, hp, Dell и Тoshiba, а также 85 российских предприятий.

Статистические данные были выбраны за те годы, когда эти фирмы имели достаточно уверенную прогрессирующую динамику своего развития на мировом рынке.

Ниже на рис. 7-10 приведены результаты зависимостей, указывающих на наличие процессов самогармонизации параметров.

1, 0, 0, 0, 0, Рис. 7. Зависимости Кфн и объема выручки для компании Samsung. Выручка имеет тенденцию приближаться к максимуму при приближении Кфн к величине 0,62.

Рис. 8. Зависимости Кфн и объема выручки для компании Nokia. Выручка имеет тенденцию находиться в зоне максимума при нахождении Кфн в зоне величины 0,62.

Рис. 9. Усредненные данные по зависимостям отношений 1) оборотные активы/всего активы и 2) активы/выручка для компаний hp, Dell и Тoshiba. Оба показателя имеет тенденцию одновременно стремиться к величине 0,62.

Далее был проведено исследование отечественных фирм по отраслям. Для расчетов было выбрано 6 ведущих отраслей. Беда наших фирм состоит в том, что они, как правило, имеют не очень достоверную финансовую (при этом даже аудированную) отчетность. Все предприятия первоначального массива были проверены на взаимообусловленность параметров. В результате из всего массива предприятий были выбраны 85 предприятий, которые распределились по отраслям следующим образом:

Полученные результаты приведены на графике рис.10.

строительная автомобили и телекоммуникации пищевая деревообработка электроэнергетика Рис. 10. Зависимости показателей 1)отношение собственный капитала/активы, и 2) приведенная выручка. Приведенная выручка максимальна для СК/А 0,62.

Вывод по всем графикам: фирмы и отрасли, которые успешно развиваются в соответствии с целью максимизации прибыли, в своем развитии имеют тенденцию к самогармонизации своих показателей.

Таким образом там, где присутствует нормальный закон распределения, там же и присутствует гармония по золотому сечению. А в силу того что нормальный закон распределения имеет место проявляться практически повсеместно, то так же повсеместно там проявляется и гармония по золотому сечению!

Отсюда следует важное следствие:

нормальный закон распределения случайной величины есть условие наличия гармоничного равновесия между хаосом и порядком в структуре этой случайной величины.

Здесь формально мы можем пока говорить о только необходимом условии.

Результат 6 (2008 год). Следующим интересным вопросом, который удалось в хорошем смысле «спровоцировать» в публикациях на сайте АТ, является вопрос о взаимосвязи (хотя и неявной) чисел e, и Ф [15] в виде некоторой функции F, равной нулю и примыкающий к этому вопрос о природе их происхождения – из решения некоторой оптимизационной задачи или же нет. И после этой публикации на электронную почту автору по этому поводу пришло несколько интереснейших публикаций, которые дорого стоят. (Всетаки жаль, Алексей Петрович, что на АТ нет открытой дискуссионной странички!).

Рассмотренные выше результаты и выводы на их основе относятся как к гауссовым законам распределения, так и к границе перехода от гауссового закона к негауссовому. А что получается в случае негаусового распределения?

К сожалению, вопрос остается открытым. Пока непосредственно «внутри»

негауссовых распределений еще не получено результатов относительно присутствия золотого сечения, аналогичных приведенным для гауссовых распределений.

И ещё на один интересный факт хотелось бы обратить внимание. Гауссовый закон распределения связан с наличием отрицательной обратной связи, негауссовый – положительной обратной связи [16]. Тогда какая связь на границе между ними в точке золотого сечения?

Ответ напрашивается такой: если некоторая система включает объекты, имеющие точку золотого сечения на границе двух распределений, в которой отсутствует какая-либо обратная связь (т.е. объекты не обмениваются ресурсами), то эта ситуация, возможно, и называется целостностью.

Вывод: по результатам исследований зарубежных и отечественных производственных и коммерческих предприятий выявлены и представлены реальные факты самогармонизации финансово-экономических показателей (в смысле пропорций золотого сечения) и предложены концептуальные теоретические аспекты их объяснения на основе использования законов распределения этих показателей.

Литература 1. Иванус А.И. Код да Винчи в бизнесе или гармоничный менеджмент по Фибоначчи. М., Комкнига, 2006.

2. Хайтун С.Д. Негауссовость социальных явлений // Социологические исследования.

1983. № 1. С. 144–152.

3. Хайтун С.Д. Проблемы количественного анализа науки. М.: Наука, 1989. 280 с 4. Богачев С.П. Основы новой теории спроса. К.: Облиздат, 2001.

5. Яблонский А.И. Модели и методы исследования науки. М.: URSS. 2001.

6. Балакшин О.Б. Саморазвития систем и золотое сечение // Международная конференция» Проблемы Гармонии, Симметрии и Золотого Сечения в Природе, Науке и Искусстве». Научные труды. Винница, 7. Балакшин О.Б. Гармония саморазвития в Природе и обществе: Подобие и аналогии.

М.:URSS. 2008.

8. Иванус А.И. Золотое сечение в системах с биномиальным законом распределения // «Академия Тринитаризма», М., Эл № 77-6567, публ.13681, 18.08. 9. Иванус А.И. К вопросу о необходимости постановки задачи гармонизации экономических систем. Материалы Девятого всероссийского симпозиума. ЦЭМИ. М, 2008.

10. Харитонов А.С. Минимальное число параметров, характеризующих социальноэкономическое развитие регионов // Аудит и финансовый анализ. 2002. №1. С.193- 11. Корн Г. и Корн Т. Справочник по математике для научных работников и инженеров.

М., Наука, 1973.

12. Василенко С.Л. Случайность и «золотая» пропорция в системе «хаос–порядок»

// «Академия Тринитаризма», М., Эл № 77-6567, публ.15220, 09.04. 13. Иванус А.И. К вопросу о постановке задачи гармонизации для экономических систем // «Академия Тринитаризма», М., Эл № 77-6567, публ.14784, 28.04. 14. Иванус А.И. Миронова Н. А. О самогармонизации финансово-экономических показателей динамично развивающихся компаний // «Академия Тринитаризма», М., Эл № 77публ.14884, 28.09. 15. Иванус А.И. О связи констант e и с золотым сечением // «Академия Тринитаризма», М., Эл № 77-6567, публ.14848, 13.07. 16. Герман А.С. Антиглобалистский манифест // «Академия Тринитаризма», М., Эл № 77-6567, публ.13857, 06.10. Для контактов с автором: ivanus26@yandex.ru



Похожие работы:

«УДК 082.2:061.3 ББК (я)94 Ф 80 Ф 80 Форум молодых учёных. Тезисы докладов. Том 2. – Нижний Новгород: Изд–во ННГУ им. Н.И. Лобачевского, 2013. – 321 с. Том 2 настоящего сборника включает в себя тезисы докладов Форума молодых учёных ННГУ, представленных молодыми преподавателями, научными сотрудниками, аспирантами и студентами ННГУ в рамках исследований по направлениям История, Филология, Коммуникации и масс–медиа, Международные отношения, Социальные науки и Педагогические науки, а также...»

«Yale ICF Working Paper No. 03-25 February 2003 RUSSIAN VERSION Modeling and Measuring Russian Corporate Governance: The Case of Russian Preferred and Common Shares William N. Goetzmann Matthew Spiegel Andrey Ukhov Yale School of Management This paper can be downloaded without charge from the Social Science Research Network Electronic Paper Collection: http://ssrn.com/abstract_id=423781 Моделирование и оценка российского корпоративного управления. Рассмотрение случая с российскими обыкновенными...»

«www.golcov.ru ГОЛЬЦОВ КИРИЛЛ СБОРНИК СТАТЕЙ Ребёнок от – 9 месяцев до 8 лет ОГЛАВЛЕНИЕ В ОЖИДАНИИ ЧУДА ОТ 0 ДО 6 МЕСЯЦЕВ ОТ 6 МЕСЯЦЕВ ДО 1 ГОДА ОТ 1 ДО 1,5 ЛЕТ ОТ 1,5 ДО 2 ЛЕТ ОТ 2 ДО 2,5 ЛЕТ ОТ 2,5 ДО 3 ЛЕТ ОТ 3 ДО 3,5 ЛЕТ ОТ 3,5 ДО 4 ЛЕТ ОТ 4 ДО 4,5 ЛЕТ ОТ 4,5 ДО 5 ЛЕТ ОТ 5 ДО 5,5 ЛЕТ ОТ 5,5 ДО 6 ЛЕТ ОТ 6 ДО 6,5 ЛЕТ ОТ 6,5 ДО 7 ЛЕТ ОТ 7 ДО 7,5 ЛЕТ ОТ 7,5 ДО 8 ЛЕТ В ОЖИДАНИИ ЧУДА Желание стать родителями – одно из самых светлых и естественных для искренне любящих людей. К сожалению, для...»

«Курс обучения методике Price Action Автор: Антон Александрович Кокорев (а.к.а. Antony, Dexter) PriceActionClub.com [прайс экшен клаб дот ком] Версия 1.0 PriceActionClub.com © 2010 WWW.PRICEACTIONCLUB.COM Оглавление Вступление...3 Глава 1. Паттерны Price Action..4 Глава 2. Тестирование паттернов на GBPUSD на графике периода Н1.50 Глава 3. Сложные паттерны..61 Глава 4. Комбинирование паттернов с уровнями PPZ, Мюррея, Фибоначчи.77 Глава 5. Комбинирование с ЕМА. Торговая система Base150.85...»

«467 ПУ Б Л И К А Ц И И Мария Янес Фаня Давыдовна Люшкевич В 2007 г. исполнилось 80 лет со дня рождения Фани Давыдовны Люшкевич — этнографа, ираниста, исследователя Средней Азии и, в частности, Бухарского оазиса. Фаня Давыдовна родилась в Ленинграде 5 декабря 1927 г. в семье бухгалтера и учительницы. Всю войну семья провела в блокадном городе. Девочка продолжала учиться в школе и оказывала посильную помощь фронту. 30 января 1944 г. Указом Президиума Верховного Совета СССР Ф.Д. Люшкевич (тогда...»

«ГКУ Курганская областная юношеская библиотека Информационно-библиографический сектор Молодежь Зауралья (Аннотированный список литературы к 70-летию Курганской области) Курган, 2013 Молодежь Зауралья : аннотированный список литературы / ГКУ Курган. обл. юнош. б-ка; информ.-библиогр. сектор; сост. Л. В. Шиукашвили.; отв. за выпуск Л. М. Пичугина. – Курган, 2013. - 49 с. 2 Содержание Введение..4 1. Молодежная политика Зауралья..5 1.1. Молодежный парламент. Форумы молодежи.9 1.2. Патриотическое...»

«ДОПОЛНИТЕЛЬНОЕ СОГЛАШЕНИЕ к договору об оказании услуг связи (утверждено Приказом № 452А/10 от 13.04.2010) Общество с ограниченной ответственностью СЦС Совинтел (далее – Оператор) и физическое/юридическое лицо (далее – Абонент) заключили настоящее Дополнительное соглашение к договору об оказании услуг связи о принятии с 24 августа 2010 года новой редакции Договора об оказании услуг связи, утвержденной Приказом № 452А/10 от 13.04.2010. 1. ОБЩИЕ ПОЛОЖЕНИЯ 1.1. Договор регулирует отношения между...»

«1 Официальное издание Калининградской рабочей группы 93 in 39 и общества АЗОТ: http://a-z-o-t.com http://vk.com/practical_magic Приложение № 39. 16-31 августа 2013 e.v. Fr. Nyarlathotep Otis Liber Rosae Ventorum: Capitulum II. Mechanica Адрес редакции: 236022, Калининград, ул. Нарвская, д. 17, кв. 11. Интернет: http://апокриф.com/, http://apokrif93.com/, http://vk.com/apokrif93, http://twitter.com/apocrypha_93, http://apokrif.bestpersons.ru/, http://pipes.yahoo.com/apokrif/info Форум:...»

«Карта сайта - Мультимедиа - 04.2010 Polaroid вновь продает моментальные камеры Джеймс Кэмерон снабдит марсоход НАСА 3D-камерой AXIS представила новые купольные HDTV-камеры 3DNews : Теги: EOS 550D PENTAX Optio M90: Ваш проводник в мир красивой фотографии Canon и Джеки Чан выпустили специальную серию зеркалки EOS 550D Polaroid возобновила производство камер для получения мгновенных фотоснимков Мал, да удал: тонкая камера BenQ E1260 умеет снимать HD видео и HDR фото Новинка от Hikvision:...»

«1 Twisted Terra: Правила игры Издание Graphium Codrus. Расширенная версия (в состав материала включена книга дополнений Атлас миров) Автор и составитель: Александр NoNsense Кульков Тестеры: BlackWizard, Bassian, Некро, Маша, Gwyn Bladdik, Кайл Особые благодарности: timujin, ALIEN, Ein, acefalcon, Эльфания, Янука, Nikku – тестеры форумки Gastagas, Shok - хостинг для проекта на umgames.ru и помощь в продвижении Кай Лешер, Orange Dog, Fev - критика и вопросы по проекту Dusha - идеи и предложения...»

«Приложение № 1 к постановлению Губернатора области от 25.09.2013 № 1074 КОНЦЕПЦИЯ ЭКОНОМИЧЕСКОЙ ПОЛИТИКИ ВЛАДИМИРСКОЙ ОБЛАСТИ, ОРИЕНТИРОВАННОЙ НА ПОВЫШЕНИЕ КОНКУРЕНТНЫХ ПРЕИМУЩЕСТВ ПРОИЗВОДИМЫХ ТОВАРОВ, РАБОТ И УСЛУГ г. Владимир, 2013 г. СОДЕРЖАНИЕ ВВЕДЕНИЕ 3 Раздел I ОЦЕНКА ВОСТРЕБОВАННОСТИ ТОВАРОВ И УСЛУГ, ПРОИЗВОДИМЫХ НА ТЕРРИТОРИИ ВЛАДИМИРСКОЙ ОБЛАСТИ 5 Раздел II ХАРАКТЕРИСТИКА ОСНОВНЫХ ПРОБЛЕМ И СДЕРЖИВАЮЩИХ ФАКТОРОВ РАЗВИТИЯ КОНКУРЕНТНЫХ ПРЕИМУЩЕСТВ ВЛАДИМИРСКОЙ ОБЛАСТИ Раздел III...»

«ПРОЕКТ СОГЛАСОВАНО: УТВЕРЖДАЮ: Председатель Начальник городского комитета департамента образования профсоюза работников образования города Братска города Братска _К.В. Кулинич А.А.Коротких _2012г. _2012г. ПОЛОЖЕНИЕ о городском конкурсе молодых руководителей Дебют – 2012 I Общие положения 1.1. Учредителями конкурса молодых руководителей Дебют – 2012 (далее Конкурс) являются департамент образования администрации города Братска и городской комитет профсоюзов работников образования. 1.2....»

«кaлужский aгропромышленный комплекс кaлужский aгроснaб цены мтз кaлужский aгрохолдинг кaлужский aдвокaт выигрaл дело кaлужский aдвокaт зуев кaлужский aдвокaт соколов влaдимир николaевич кaлужский aдминистрaтивный суд кaлуги кaлужский aдрес кaлужский aзaровский детский дом кaлужский aзaровский дом-интернaт кaлужский aйсикью чaт кaлужский aквaпaрк кaлужский aквaпaрк фото кaлужский aквопaрк его телефон кaлужский aккорд пиaнино кaлужский aккордеон кaлужский aктер aндрей фролов интервью кaлужский...»

«НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК УКРАИНЫ ИНСТИТУТ ПРОБЛЕМ РЕГИСТРАЦИИ ИНФОРМАЦИИ А. Г. Додонов, Д. В. Ландэ, В. В. Прищепа, В. Г. Путятин КОНКУРЕНТНАЯ РАЗВЕДКА В КОМПЬЮТЕРНЫХ СЕТЯХ Киев – 2013 УДК 004.5 ББК 22.18, 32.81, 60.54 C95 А.Г. Додонов, Д.В. Ландэ, В.В. Прищепа, В.Г. Путятин Конкурентная разведка в компьютерных сетях. – К.: ИПРИ НАН Украины, 2013. – 250 с. Книга посвящена рассмотрению вопросов интернет-разведки – сегменту конкурентной разведки, охватывающему процедуры сбора и обработки...»

«Выводы и резюме Четвертое заседание Рабочей группы ЮНВТО по Шелковому пути Отель Radisson Blu Iveria, Тбилиси, Грузия 7-8 июля 2014 г. С 7 по 8 июля в Тбилиси (Грузия) прошло Четвертое заседание Рабочей группы ЮНВТО по Шелковому пути, организованное ЮНВТО и Национальной администрацией туризма Грузии. Заседание проходило одновременно с первым авиационным форумом по развитию авиамаршрутов на Шелковом пути Routes Silk Road, организованным Routes Online (UBM) и Объединенными аэропортами Грузии....»

«РАДИОЛОГИЯ 2005 МАТЕРИАЛЫ ВСЕРОССИЙСКОГО НАУЧНОГО ФОРУМА РАДИОЛОГИЯ 2005 МОСКВА Центр международной торговли 31 мая - 3 июня Москва 2005 1 МАТЕРИАЛЫ ВСЕРОССИЙСКОГО НАУЧНОГО ФОРУМА РАДИОЛОГИЯ 2005 М., 2005 - 596 с. Министерство здравоохранения и социального развития РФ Российская академия медицинских наук Российский научный центр рентгенрадиологии Росздрава Российская ассоциация рентгенрадиологов Российская ассоциация специалистов УЗ диагностики в медицине ЗАО МЕДИ Экспо 5- 94943-023-9 ©МЕДИ...»

«ИНСТИТУТ СТРАН СНГ ИНСТИТУТ ДИАСПОРЫ И ИНТЕГРАЦИИ СТРАНЫ СНГ Русские и русскоязычные в новом зарубежье ИНФОРМАЦИОННО-АНАЛИТИЧЕСКИЙ БЮЛЛЕТЕНЬ 41 № 1.12.2001 Москва ИНФОРМАЦИОННО-АНАЛИТИЧЕСКИЙ БЮЛЛЕТЕНЬ СТРАНЫ СНГ. РУССКИЕ И РУССКОЯЗЫЧНЫЕ В НОВОМ ЗАРУБЕЖЬЕ Издается Институтом стран СНГ с 1 марта 2000 г. Периодичность 2 номера в месяц Издание зарегистрировано в Министерстве Российской Федерации по делам печати, телерадиовещания и средств массовых коммуникаций Свидетельство о регистрации ПИ №...»

«171 ОБСУЖДЕНИЕ СТАТЬИ Обсуждение статьи Сергея Соколовского Сергей Соколовский Несколько историй про копирайт и культуру Необычный случай произошел австралийским летом 2002 г.: январские столичные газеты пестрели заголовками, извещающими читателя, что активисты из палаточного посольства аборигенов похитили герб, украшавший западный постамент у входа в здание старого парламента в Канберре, объявив, что изображенные на нем кенгуру и эму являются их культурной собственностью. Акция была приурочена...»

«Создан по инициативе Диагностов - активных Участников Форума http://forum.autodata.ru/ и Издательства Легион - Автодата http://autodata.ru/, зарегистрирован в Едином государственном реестре юридических лиц Российской Федерации 23 октября 2007 г. Поддерживается Издательством Легион - Автодата АРХИВ Авторских статей интернет-ресурса ЛЕГИОН-АВТОДАТА за предыдущие годы Внимание: адреса за 2009 год приводятся сокращенные и, если Вы хотите найти статью, то перед скопированным адресом статьи...»

«Suzuki Swift | Ignis Chevrolet Cruze Модели 2WD&4WD Suzuki Swift 2000-2005 гг. выпуска Suzuki Ignis c 2000 года выпуска Chevrolet Cruze 2001-2008 гг. выпуска с двигателями M13A (1,3 л) и M15A (1,5 л) Устройство, техническое обслуживание и ремонт Москва Легион-Автодата 2009 УДК 629.314.6 ББК 39.335.52 С89 Сузуки Свифт / Игнис, Шевроле Круз. Модели 2WD&4WD Suzuki Swift 2000-2005 гг. выпуска, Suzuki Ignis c 2000 года выпуска, Chevrolet Cruze 2001-2008 гг. выпуска с двигателями M13A (1,3 л) и M15A...»










 
2014 www.av.disus.ru - «Бесплатная электронная библиотека - Авторефераты, Диссертации, Монографии, Программы»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.